190.5=15.b^2

Simple and best practice solution for 190.5=15.b^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 190.5=15.b^2 equation:



190.5=15.b^2
We move all terms to the left:
190.5-(15.b^2)=0
We get rid of parentheses
-15.b^2+190.5=0
We add all the numbers together, and all the variables
-15b^2+190.5=0
a = -15; b = 0; c = +190.5;
Δ = b2-4ac
Δ = 02-4·(-15)·190.5
Δ = 11430
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11430}=\sqrt{9*1270}=\sqrt{9}*\sqrt{1270}=3\sqrt{1270}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-3\sqrt{1270}}{2*-15}=\frac{0-3\sqrt{1270}}{-30} =-\frac{3\sqrt{1270}}{-30} =-\frac{\sqrt{1270}}{-10} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+3\sqrt{1270}}{2*-15}=\frac{0+3\sqrt{1270}}{-30} =\frac{3\sqrt{1270}}{-30} =\frac{\sqrt{1270}}{-10} $

See similar equations:

| 12/15x+10=3/15x | | -2x+5+x=7 | | 7x-32+x=23-3x | | 0.4r=6.28 | | (x+50)^2=36 | | -x-1-x=x-3+x | | 4(3-x)=5x-51 | | 3y-7=4y-10 | | 2(x-14)=-3x+2 | | A=3.14x13x13 | | z-3.4=18 | | x+40/5=49 | | z-3.7=4.63 | | 5+18n=50.50 | | X2+4x+-1=0 | | 2n=5=69 | | 2(2+x)=-2(x+2) | | (2x+3)/4=x/4-1 | | x/17=28 | | -1/7x=-1 | | (5a+2)(a+4)=0 | | 1/5c+6=12 | | 35+4x+7=90 | | 5-4+7x+1=7x+20 | | -11-5x=6(5x=4) | | x/3-1.1=-5.9 | | 5-4+7x+1=7x+10 | | 3x^2-8×=16 | | 70x/5=37 | | 4x/3=43 | | n+5=40/8 | | 14-u=206 |

Equations solver categories